Accurate Band-Structure Calculations for the 3d Transition Metal Oxides

Scientific Achievement

The Center for Inverse Design has developed a method to calculate accurate band structures and bandgap energies for *3d* transition metal oxides using an augmented GW formalism.

Significance and Impact

This approach provides a computationally viable route for high-throughput prediction of band structures and optical properties in transition metal compounds.

			D - 1 - 1	_
ĸ	$\Delta C \Delta \Delta$	rcn	Detai	ıc
17	CSCa	ı	Detai	IJ

- Many-body GW calculations are accurate for main-group compounds, but not for transition-metal compounds.
- We have shown that using an element-specific on-site potential for transition-metal *d*-orbitals can qualitatively improve the calculated bandgap energies (see table).
- Using this method, electronic structure calculations with correct *d*-band energies and accurate absorption spectra can be calculated (see figure).
- This will enable high-throughput band-structure prediction for semiconductor materials containing transition metals.

E _g [eV]	Expt.	GW _{RPA}	GW _{vd}
TiO ₂	3.0	4.48	3.11
Cr ₂ O ₃	3.2	4.75	3.23
FeO	2.1	1.65	2.14
Fe ₂ O ₃	2.1	3.57	2.01
Cu ₂ O	2.1	1.59	2.03
CuO	1.6	2.49	1.19

Bandgaps $E_{\rm g}$ (eV) in experiment, in standard GW (RPA), and in the new GW with $V_{\rm d}$ potential method.

Density of states (DOS) and absorption spectrum, shown for Cu_2O and CuO.

S. Lany, Phys. Rev. B 87, 085112 (2013).

