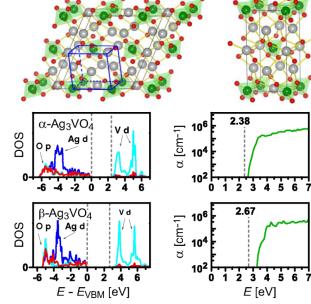
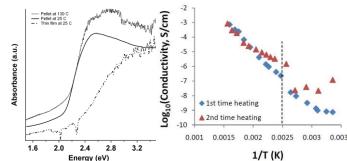
Silver Vanadates: A New Class of Computationally Designed p-type Transparent Conducting Oxides

Scientific Achievement

The Center for Inverse Design (CID) identified *silver vanadates* as a new class of p-type conductor, which are free from intrinsic hole-killing defects and have moderate transparency. β -Ag₃VO₄ was synthesized and measured at high temperature.


Significance and Impact

This work identifies a family of new *p*-type materials with potential to be good transparent contacts; key for improving the conductivity is the possibility for Cu substitution and doping.


Research Details

- p-type (hole-carrier) transparent conducting oxides are highly desired for photo-voltaics and display. However, to date, no high-performance materials are known.
- Using predictive theory, the CID identified Ag_3VO_4 as a promising p-type conducting oxide. In particular, θ - Ag_3VO_4 appears attractive.
- Theory predicted an optical absorption edge of 2.6 eV for α -Ag₃VO₄ (with an indirect gap of 2.38 eV) and of 3.3 eV for β -Ag₃VO₄ (indirect bandgap at 2.67 eV).
- Ag $_3$ VO $_4$ crystals, both the α and β -polymorphs, were synthesized by a novel hydrothermal technique. The α -phase was predicted to be stable at room temperature and the β -phase at elevated temperature. Experimentally, we found the α -phase is stable below 365 K and the β -phase, although much more conductive, is only stable at elevated temperature.
- Attempts to stabilize the θ -Ag₃VO₄ phase in thin-film form were unsuccessful by both sputtering and pulsed laser deposition.

V. Cloet, A. Raw, K.R. Poeppelmeier, G. Trimarchi, H. Peng, J. Im, A. Freeman, N. Perry, A. Zakutayev, P. Ndione, D. Ginley, J. Perkins, *Chem. Mater.* **24**(17), 3346–3354 (2012).

(*Left*) Calculated density of states (DOS). (*Right*) optical absorption profiles for Ag₂VO₆.

(Left) Measured diffuse reflectance of α -Ag₃VO₄. (Right) Measured electrical conductivity of Ag₃VO₄ as a function of temperature.

