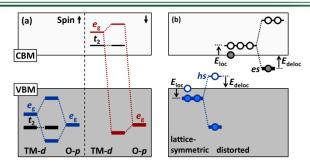
Design Principles Demonstrated for Semiconducting d⁵ Transition-Metal Oxides with Photovoltaic Applications Potential

Scientific Achievement


The Center for Inverse Design (CID) used theory to predict band structure and transport properties for the d^5 transition metal (TM) oxides MnO and Fe₂O₃.

Significance and Impact

This work identified design principles for improving d^5 oxides as a new class of semiconductors with potential applications in energy conversion.

Research Details

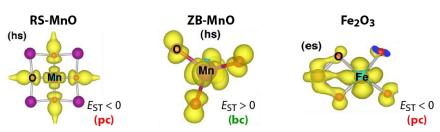

- Computational methods: Many-body GW calculations and ab-initio polaron theory for Fe₂O₃ and two modifications of MnO (RS, rock-salt; and ZB, zinc-blende).
- **Band structure**: Theory shows electronic structure of d^5 oxides leads to desirable low effective masses; in addition, zinc-blende MnO has a bandgap in visible range.
- *Carrier self-trapping*: Mn tends to trap holes, Fe tends to trap electrons; hole trapping (small-polaron) can be avoided by the tetrahedral coordination in ZB-MnO.
- *Outlook*: This work is the basis for further materials design of d^5 oxides: ternary compounds and alloys.

Figure 1: Schematic illustration of the (a) atomic orbital interaction in d^5 oxides, and (b) formation of a self-trapped hole state (hs) or electron state (es).

Table: Bandgap $E_{\rm g}$ (eV), effective mass m^* (in units of $m_{\rm e}$), and self-trapping energy $E_{\rm ST}$ (eV) for electrons (e) and holes (h).

	E g	m _e *	m _h *	E _{ST} (h)	E _{ST} (e)
RS-MnO	3.4	0.3	1.2	-0.24	-
ZB-MnO	2.1	0.3	4.8	+0.23	-
Fe ₂ O ₃	2.0	1.5	2.1	-	-0.23

Figure 2: Wave-functions of the self-trapped (small-polaron) state; sign of E_{ST} indicates band or polaron conduction (bc or pc).

Work performed at the National Renewable Energy Laboratory

H. Peng and S. Lany, *Phys. Rev. B (Rapid Comm.)* **85**, 201202(R) (2012).

